Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Research on the settling dynamics of snow particles, considering their complex morphologies and real atmospheric conditions, remains scarce despite extensive simulations and laboratory studies. Our study bridges this gap through a comprehensive field investigation into the three-dimensional (3-D) snow settling dynamics under weak atmospheric turbulence, enabled by a 3-D particle tracking velocimetry (PTV) system to record over a million trajectories, coupled with a snow particle analyser for simultaneous aerodynamic property characterization of four distinct snow types (aggregates, graupels, dendrites, needles). Our findings indicate that while the terminal velocity predicted by the aerodynamic model aligns well with the PTV-measured settling velocity for graupels, significant discrepancies arise for non-spherical particles, particularly dendrites, which exhibit higher drag coefficients than predicted. Qualitative observations of the 3-D settling trajectories highlight pronounced meandering in aggregates and dendrites, in contrast to the subtler meandering observed in needles and graupels, attributable to their smaller frontal areas. This meandering in aggregates and dendrites occurs at lower frequencies compared with that of graupels. Further quantification of trajectory acceleration and curvature suggests that the meandering frequencies in aggregates and dendrites are smaller than that of morphology-induced vortex shedding of disks, likely due to their rotational inertia, and those of graupels align with the small-scale atmospheric turbulence. Moreover, our analysis of vertical acceleration along trajectories elucidates that the orientation changes in dendrites and aggregates enhance their settling velocity. Such insights into settling dynamics refine models of snow settling velocity under weak atmospheric turbulence, with broader implications for more accurately predicting ground snow accumulation.more » « less
-
Stochastically generated instantaneous velocity profiles are used to reproduce the outer region of rough-wall turbulent boundary layers in a range of Reynolds numbers extending from the wind tunnel to field conditions. Each profile consists in a sequence of steps, defined by the modal velocities and representing uniform momentum zones (UMZs), separated by velocity jumps representing the internal shear layers. Height-dependent UMZ is described by a minimal set of attributes: thickness, mid-height elevation, and streamwise (modal) and vertical velocities. These are informed by experimental observations and reproducing the statistical behaviour of rough-wall turbulence and attached eddy scaling, consistent with the corresponding experimental datasets. Sets of independently generated profiles are reorganized in the streamwise direction to form a spatially consistent modal velocity field, starting from any randomly selected profile. The operation allows one to stretch or compress the velocity field in space, increases the size of the domain and adjusts the size of the largest emerging structures to the Reynolds number of the simulated flow. By imposing the autocorrelation function of the modal velocity field to be anchored on the experimental measurements, we obtain a physically based spatial resolution, which is employed in the computation of the velocity spectrum, and second-order structure functions. The results reproduce the Kolmogorov inertial range extending from the UMZ and their attached-eddy vertical organization to the very-large-scale motions (VLSMs) introduced with the reordering process. The dynamic role of VLSM is confirmed in the$$-u^{\prime }w^{\prime }$$co-spectra and in their vertical derivative, representing a scale-dependent pressure gradient contribution.more » « lessFree, publicly-accessible full text available November 25, 2025
-
The statistical properties of uniform momentum zones (UMZs) are extracted from laboratory and field measurements in rough wall turbulent boundary layers to formulate a set of stochastic models for the simulation of instantaneous velocity profiles. A spatiotemporally resolved velocity dataset, covering a field of view of$$8 \times 9\,{\rm m}^2$$, was obtained in the atmospheric surface layer using super-large-scale particle image velocimetry (SLPIV), as part of the Grand-scale Atmospheric Imaging Apparatus (GAIA). Wind tunnel data from a previous study are included for comparison (Heiselet al.,J. Fluid Mech., vol. 887, 2020, R1). The probability density function of UMZ attributes such as their thickness, modal velocity and averaged vertical velocity are built at varying elevations and modelled using log-normal and Gaussian distributions. Inverse transform sampling of the distributions is used to generate synthetic step-like velocity profiles that are spatially and temporally uncorrelated. Results show that in the wide range of wall-normal distances and$$Re_\tau$$up to$$\sim O(10^6)$$investigated here, shear velocity scaling is manifested in the velocity jump across shear interfaces between adjacent UMZs, and attached eddy behaviour is observed in the linear proportionality between UMZ thickness and their wall normal location. These very same characteristics are recovered in the generated instantaneous profiles, using both fully stochastic and data-driven hybrid stochastic (DHS) models, which address, in different ways, the coupling between modal velocities and UMZ thickness. Our method provides a stochastic approach for generating an ensemble of instantaneous velocity profiles, consistent with the structural organisation of UMZs, where the ensemble reproduces the logarithmic mean velocity profile and recovers significant portions of the Reynolds stresses and, thus, of the streamwise and vertical velocity variability.more » « less
-
Taphonomic processes create bias in the fossil record, and understanding these processes is integral to interpreting the record of extinct life worldwide. Bones preserved in fluvial environments make up a substantial part of the vertebrate fossil record. These bones have often been transported varying distances from the location of death before becoming buried. Experiments in flumes and natural settings have explored the fluvial taphonomy of mammal skeletons, but the taphonomy of other terrestrial vertebrates, especially extinct clades, has only been sparingly studied directly. Hadrosauroids are a dinosaur clade known from extensive remain throughout the Cretaceous and across the globe, making them an ideal group for taphonomic study. Previous examinations regarding the fluvial taphonomy of their skeletons have often applied bone transport groups derived from classic studies on mammals. Some researchers have raised concerns that the morphologies of non-mammalian bones would not exhibit the same hydraulic properties as mammals, producing different transport patterns. Here, we investigate hadrosauroid bone transport under various flow conditions through actualistic flume experiments using 3d printed models with comparable densities to real bone. We aimed to characterize the timing of transport of different elements (Voorhies Groups), orientation of bones relative to flow direction, and bone surface abrasion patterns. Some elements behave similarly to those described in mammals. As would be expected from previous work, relatively heavy bones such as the femur tend to move last, acting as lag elements. Lighter elements such as the scapula and radius tended to begin moving at much lower flow speeds. Because dinosaur pelvic bones are not fused as in mammals, we observed that the isolated pubis is often among the first elements to commence movement, often rotating or sliding along the bed. Cylindrical limb bones tend to roll or slide along the bed, orienting to be parallel to flow faster or slower depending on element size and flow velocity. Bones with more complex shapes, such as the curved and concave blade of the scapula, moved in less straightforward and unique ways, even vaulting over other bones. We also found that burial by fine silt and mud could be achieved relatively quickly even at slower flow speeds, and burial by sand played an important part in inhibiting transport in higher flow regimes.more » « less
-
We experimentally investigate the settling of millimetre-sized thin disks in quiescent air. The range of physical parameters is chosen to be relevant to plate crystals settling in the atmosphere: the diameter-to-thickness aspect ratio is $$\chi =25\unicode{x2013}60$$ , the Reynolds numbers based on the disk diameter and fall speed are $Re=O(10^2)$ and the inertia ratio is $I^*=O(1)$ . Thousands of trajectories are reconstructed for each disk type by planar high-speed imaging, using the method developed by Baker & Coletti ( J. Fluid Mech. , vol. 943, 2022, A27). Most disks either fall straight vertically with their maximum projected area normal to gravity or tumble while drifting laterally at an angle $$<20^\circ$$ . Two of the three disk sizes considered exhibit bimodal behaviour, with both non-tumbling and tumbling modes occurring with significant probabilities, which stresses the need for a statistical characterization of the process. The smaller disks (1 mm in diameter, $Re=96$ ) have a stronger tendency to tumble than the larger disks (3 mm in diameter, $Re=360$ ), at odds with the diffused notion that $Re=100$ is a threshold below which falling disks remain horizontal. Larger fall speeds (and, thus, smaller drag coefficients) are found with respect to existing correlations based on experiments in liquids, demonstrating the role of the density ratio in setting the vertical velocity. The data supports a simple scaling of the rotational frequency based on the equilibrium between drag and gravity, which remains to be tested in further studies where disk thickness and density ratio are varied.more » « less
-
Abstract Understanding the organization and dynamics of turbulence structures in the atmospheric surface layer (ASL) is important for fundamental and applied research in different fields, including weather prediction, snow settling, particle and pollutant transport, and wind energy. The main challenges associated with probing and modeling turbulence in the ASL are: i) the broad range of turbulent scales associated with the different eddies present in high Reynolds-number boundary layers ranging from the viscous scale (𝒪(mm)) up to large energy-containing structures (𝒪(km)); ii) the non-stationarity of the wind conditions and the variability associated with the daily cycle of the atmospheric stability; iii) the interactions among eddies of different sizes populating different layers of the ASL, which contribute to momentum, energy, and scalar turbulent fluxes. Creative and innovative measurement techniques are required to probe near-surface turbulence by generating spatio-temporally-resolved data in the proximity of the ground and, at the same time, covering the entire ASL height with large enough streamwise extent to characterize the dynamics of larger eddies evolving aloft. To this aim, the U.S. National Science Foundation sponsored the development of the Grand-scale Atmospheric Imaging Apparatus (GAIA) enabling super-large snow particle image velocimetry (SLPIV) in the near-surface region of the ASL. This inaugural version of GAIA provides a comprehensive measuring system by coupling SLPIV and two scanning Doppler LiDARs to probe the ASL at an unprecedented resolution. A field campaign performed in 2021–2022 and its preliminary results are presented herein elucidating new research opportunities enabled by the GAIA measuring system.more » « less
-
We present a field study of snow settling dynamics based on simultaneous measurements of the atmospheric flow field and snow particle trajectories. Specifically, a super-large-scale particle image velocimetry (SLPIV) system using natural snow particles as tracers is deployed to quantify the velocity field and identify vortex structures in a 22 m $$\times$$ 39 m field of view centred 18 m above the ground. Simultaneously, we track individual snow particles in a 3 m $$\times$$ 5 m sample area within the SLPIV using particle tracking velocimetry. The results reveal the direct linkage among vortex structures in atmospheric turbulence, the spatial distribution of snow particle concentration and their settling dynamics. In particular, with snow turbulence interaction at near-critical Stokes number, the settling velocity enhancement of snow particles is multifold, and larger than what has been observed in previous field studies. Super-large-scale particle image velocimetry measurements show a higher concentration of snow particles preferentially located on the downward side of the vortices identified in the atmospheric flow field. Particle tracking velocimetry, performed on high resolution images around the reconstructed vortices, confirms the latter trend and provides statistical evidence of the acceleration of snow particles, as they move toward the downward side of vortices. Overall, the simultaneous multi-scale particle imaging presented here enables us to directly quantify the salient features of preferential sweeping, supporting it as an underlying mechanism of snow settling enhancement in the atmospheric surface layer.more » « less
-
null (Ed.)The statistical properties of prograde spanwise vortex cores and internal shear layers (ISLs) are evaluated for a series of high-Reynolds-number turbulent boundary layers. The considered flows span a wide range of both Reynolds number and surface roughness. In each case, the largest spanwise vortex cores in the outer layer of the boundary layer have size comparable to the Taylor microscale $$\lambda _T$$ , and the azimuthal velocity of these large vortex cores is governed by the friction velocity $${u_\tau }$$ . The same scaling parameters describe the average thickness and velocity difference across the ISLs. The results demonstrate the importance of the local large-eddy turnover time in determining the strain rate confining the size of the vortex cores and shear layers. The relevance of the turnover time, and more generally the Taylor microscale, can be explained by a stretching mechanism involving the mutual interaction of coherent velocity structures such as uniform momentum zones with the evolving shear layers separating the structures.more » « less
An official website of the United States government

Full Text Available